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ABSTRACT   
 
This publication reports on a compact presentation of a one-dimensional model for the 
description of two-phase flows with heat exchange. This model was proposed earlier in the 
form of a system of equations, containing the heat conduction and entropy conservation 
equations for each phase. In this report the system is formulated in a form that is consistent 
with the formulation of the preceding report of the author. The present system of equations 
uniformly describes the evolution of averaged variables and interphase fluctuation 
parameters. The correctness of the model has been established for convex equations of state 
and for proper compaction dynamics kinetics. 
 
 

RELEASE LIMITATION 

Approved for public release 
 



 

 

Published by 
 
DSTO  Defence Science and Technology Organisation 
PO Box 1500 
Edinburgh South Australia 5111   Australia 
 
Telephone:  (08) 8259 5555 
Fax:  (08) 8259 6567 
 
© Commonwealth of Australia 2006  
AR-013-654 
May 2006 
 
 
 
 
 
 
APPROVED FOR PUBLIC RELEASE 
 



 

 

 
 

A Thermodynamically Complete Model for One-
Dimensional Two-Phase Flows With Heat Exchange     

 
 

Executive Summary    
 
Multi-phase flows are common in modern civilian and military environments. For 
example, multi-phase modelling is an inevitable procedure required for the design of 
modern internal combustion engines and when analysing internal ballistics problems. 
In the last decade the area of multi-phase modelling has rapidly expanded due to the 
development of novel warheads dealing with heterogeneous energetic mixtures, the 
emergence of multi-phase issues in terrorism threats such as contamination bombs, 
and an extensive use of multi-phase media and porous materials for blast mitigation. 
 
Thus, two-phase modelling is an urgent requirement for the analysis of novel weapons 
and target responses. However, the nomenclature of existing two-phase models 
requires the use of a specific software framework that deals with a separate description 
of the two different phases complemented with the pre-selection of exchange terms 
and connecting governing equations. 
 
The present report deals with a model presentation based on a description of a two-
phase mixture as an averaged medium, using conservation laws for parameters of the 
mixture complemented by governing equations for the disequilibrium parameters 
(interphase fluctuation parameters). This formulation is believed to be most suitable for 
the implementation of a model within the existing hydrocode frameworks via the user-
defined subroutine apparatus. 
 
The present model describes behaviour of a two-phase heat conductive isotropic 
mixture with the ability to exchange mass, momentum, and energy between phases. 
The heat conduction is described within the extended thermodynamics approach 
(hyperbolic heat conduction) that makes the final system of equations of hyperbolic 
type. Fundamentals of the model have been published in [1], which are slightly 
modified in the present report and reduced to a compact form consistent with the 
formulation [2]. Conditions of hyperbolicity of the system of equations comprising the 
model have been established in the report, which are linked with the natural 
conditions of convexity for the internal energy dependencies for each phase. The 
correctness of the model has also been established by restrictions on the compaction 
dynamics kinetics. 
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1. Introduction 

Multi-phase media are widely involved in modern civilian and military technology 
environments. Examples of the media are reactive mixtures in high-speed engines, a 
variety of energetic and filling constituents employed in modern weapons, gas-liquid 
aerosols and porous buffer materials used for blast mitigation. In particular, the 
heterogeneous energetic mixtures are widely used for arranging a tailored energy release 
in munitions such as delayed reaction/initiation, afterburn, etc. Simulation of the 
behaviour of such materials requires a description with models which are capable of 
calculating multi-phase flows. The two-phase models, consisting of the conservation laws 
for mass, momentum and energy for each phase are very popular. In that case, the 
conservation laws are formulated for partial characteristics (the mass-related 
characteristics for each phase with respect to the mixture volume, containing several 
phases) and interconnected by the exchange terms. The system of equations for both 
phases is complemented by a tabulated governing equation for the volume concentration 
of a phase (the compaction dynamics equation). This approach has certain drawbacks: i) it 
involves non-conservative terms associated with so-called ‘interfacial’ (or configurational) 
pressure (e.g., see the frequently cited Baer-Nunziato (BN) publication [3] for a model that 
was first formulated in [4]); and ii) it is impossible to implement the model in a hydrocode 
with the user-defined subroutine interface because the description involves descriptions 
for each phase and it is in contradiction with the typical hydrocode structure. Many 
attempts to consider a multi-phase medium as an averaged one have been made, including 
a classic monograph by Truesdell [5]. However, a closed thermodynamic formulation, 
resulting in an efficient practical realisation, had not been proposed at that time. A variety 
of models have been recently developed in several papers [3, 4, 6, 7, 8]. However, they are 
not formulated as conservation laws and these non-conservative formulations complicate 
analysis of thermodynamical correctness of the models. 
 
The present work employs an approach, enabling us to derive equations in the form of 
conservation laws. One of the first realizations of this approach has been published in [9]. 
This allowed one to formulate equations for the averaged parameters and mass 
concentration, so the effective averaging parameter, which is involved in the 
consideration, is the mass concentration of a phase. Realization of this approach as a 
computer code [9] resulted in significant numerical difficulties associated with the mass 
exchange in the areas of high mass concentration due to actual involvement of partial 
characteristics in the calculation process. A formulation [7] should be mentioned which 
modified the BN model into a form that combines three conservation laws for the mixture 
with four independent equations out of the original BN model. Replacement of the partial 
characteristics by specific characteristics of the phases (‘real’ densities, pressures, etc) 
resulted in the parametrization (see, e.g., [10]) that claims that the mass concentration and 
density are not the only parameters involved in the complete description of the phases’ 
state. This parametrization dictates that characterisation of the phases’ state has to involve 
both the mass and volume fractions. The models employing this parametrization resulted 
in a successful model such as [11]. Reduction of the model for the one-dimensional multi-
phase flows to a compact form has been conducted in [2].  
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The model [2, 11] considers a two-phase flow without heat exchange, by neglecting the 
temperature and entropy differences between the phases. However, the heat exchange 
appears to be critical in mixtures that contain phases which are either highly energetic or 
have highly contrasting properties and very different thermo-physical characteristics. A 
model that takes into account the heat exchange on the basis of hyperbolic heat 
conductivity was formulated in [1]. The equation derivation in the present report modifies 
the model in order to preserve the characteristic structure of the original systems when 
reducing it to the two-phase case. The outcome suggests a reduced form of the model for 
the one-dimensional case, and proposes a set of parameters allowing one to derive a 
compact form of the model in this case. This formulation helps us: i) to provide a 
thermodynamically correct model; ii) to solve a Riemann problem for a two-phase mixture 
with the help of a single-phase Riemann solver applied to each phase; and iii) to formulate 
jump conditions in a compact form. This formulation could also be convenient for 
generalisation of the model to multi-phase case. 
 
 

2. Basic single-phase model 

To start, we recall a heat conduction single-phase model [12] for the case of isotropic 
material with a spherical stress tensor presented by pressure only. The model is based on 
the principles of extended thermodynamics [13] and uses a generalisation of Fourier’s heat 
conduction law to a non-stationary heat conduction hyperbolic equation. We slightly 
generalise the model by including the right-hand side source terms that characterise the 
external mass, momentum, and heat production (this generalisation will be useful further 
on, when the system is used for the development of a two-phase model). The combined 
system of equations for the description of mechanical and thermal response of a material 
takes the following form [12]: 
 

( )

( )

( ) ( )[ ] ,22

,

,

,

0

22

0

2

0

l
x

TJpuueu
t
ue

q
x

Tqu
t
q

n
x

pu
t
u

m
x
u

t

=
∂

+++∂
+

∂
+∂

−=
∂
+∂

+
∂
∂

=
∂
+∂

+
∂
∂

=
∂
∂

+
∂
∂

ρρ
τ
ρρρ

ρρ

ρρ

     (1) 

 
here m0 is the mass production rate, n0 is the momentum production rate and l0 is the 
energy production rate. Dependent thermodynamic variables are calculated as 
 
p = ρ2eρ ,       T = es ,        J = eq .        (2) 
 
They are associated with the following thermodynamic identity 
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T ds = de + p dV – J dq 
 
where internal energy e = e(ρ, s, q) is a given function of the material state. Independent 
variables of the system (1) are ρ, s, q, and u, which are specific density, specific entropy, a 
thermal impulse variable and particle velocity, respectively. The function τ determines the 
characteristic time of ‘thermal relaxation’ (see [12]). The dependent variables are pressure 
p, temperature T, and an entropy flux variable J, which are calculated from the internal 
energy as stated in (2). It should be noted that the origin of the variable q comes from the 
heat flux entering Fourier’s law, but in the present form it has quite a vague physical 
meaning with units in (s·m2·grad)/kg. In fact, its physical meaning is that J = eq (J is 
measured in W/(m2·grad)), where the actual heat flux is presented by the term J·T. 
 
Expanding the last equation of the system (1) with the use of the mass and momentum 
conservation laws, we have 
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here d/dt = ∂/∂t + u·∂/∂x is the particle derivative. Using the calculation rules for 
dependent variables and the heat flux equation of the system (1), we can derive the 
entropy production equation: 
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where φ = ρq/τ and μ´ = μ – u2/2 when 
 
μ = e + p / ρ – T s – q J        (4) 
 
is the chemical potential. The equation (3) shows that J is really the entropy flux and the 
entropy production is non-negative (in the absence of external mass and momentum 
production) when q·J ≥ 0. 
 
For the derivation of the system of equations in the form of conservation laws, one more 
consequence of the system (1) will be useful when we deal with the two-phase case. We 
note that a consequence of the momentum equation could be rewritten as 
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This equation has been used in [1, 9, 11] in order to derive an equation for the velocity 
interphase fluctuations in a two-phase single-temperature non-heat-conducting medium. 
This was possible because the non-conservative term in the left-hand side of (5) could be 
reduced to a gradient of the chemical potential because the temperature variation between 
the phases was neglected. In the present case, using the derivation rules (2) for the 
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dependent variables, the differential of the chemical potential (4) can be assessed as 
follows 
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From (6), equation (5) can be rewritten in the following form 
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It is clearly seen from (7) that for a single-temperature medium (when temperature and 
entropy are not changing between the phases) in the absence of heat conduction, the 
velocity difference allowed one to keep the chemical potential in the divergent form and 
eliminate the temperature and entropy flux gradients from the velocity difference 
equation. For the heat conductive medium with varying temperature between the phases 
the situation is more complex. However, it is possible to derive another conservation law 
using a consequence from the heat conduction equation of the system (1) rewritten for q 
and the entropy conservation law (3). Multiplying the heat conduction equation by ρs and 
the equation (3) by q, after their summation we have: 
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and, subtracting this equation from (7), we obtain a required conservation law 
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For the sake of convenience we call the difference u – ρsq a chemical flux due to the 
association between the variable change and the gradient of μ´: 
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where ρη = u – ρsq. 
 
The system of equations (1) complemented by the auxiliary equations (3) and (8) and 
closed by relationships (2) are all necessary to derive equations for a two-phase model. 
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3. Selection of parameters for a two-phase model 

Let us denote the averaged density of a two-phase medium by ρ = m/V, here m is mass of 
a representative volume and V is the volume occupied by the mass. Similarly, we can 
define specific densities of the phases ρ1 = m1/V1 and ρ2 = m2/V2, where m = m1 + m2 and 
V= V1 + V2. Multi-phase theories usually deal with so-called partial densities, which relate 
the phase masses to the whole volume such as: ρ΄1=m1/V and ρ΄2=m2/V. These partial 
characteristics are key ones because the conservation laws for each phase are actually 
formulated only for the partial characteristics. For the case of a media with phases, which 
are capable of exchanging mass, momentum, and heat, the conservation laws in the one-
dimensional case take the following form for the first phase: 
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and for the second phase: 
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Here m0, n0, and l0 are the mass, momentum, and heat exchange rates, respectively; ui 
(i=1,2) are velocities of the phases, p΄1 and p΄2 are partial pressures within the phases, qi 
(i=1,2) are thermal impulse variables for the phases, and e΄1 and e΄2 are specific internal 
energies. The thermodynamic identity  
 
T ds = de + p dV  – J dq = de – p dρ/ρ 2  – J dq ,     (11) 
 
where V is specific volume, being applied to each of the phases, enables us to calculate 
partial pressure, temperature, and the entropy flux similar to (2): 
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if dependencies of specific energy on ρ΄, s, and q are given: 
 
e1 = e΄1( ρ΄1, s1, q1)  ,    e2 = e΄2( ρ΄2, s2, q2)  .      (13) 
 
It should be noted that the definition of partial pressure is based on the application of the 
thermodynamic identity (11) with respect to partial density. Thus, the traditional approach 
to the calculation of two-phase flows is to solve numerically systems (1) and (2), pre-
selecting the exchange terms m0, n0 and l0, and tabulating the ‘equations of state’ in the 
form (13) (for the sake of convenience, we call the relations such as (13) equations of state), 
using (12) for the calculation of pressure, temperature, and the entropy flux. 
 
We can complement the systems (9-10) with additional conservation laws for the entropy 
flux similar to (3) 
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and for the chemical flux as follows from (8): 
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It should be noted that the chemical potentials μi may involve in their definitions (that are 
identical to (4)) equally partial (ρ´i and p´i) or ‘real’ (ρi and pi) characteristics, because pi/ρi = 
p´i /ρ´i (see [2]). 
 
The procedure of averaging, having been employed in [7], involves the introduction of the 
averaged density, pressure, and velocity. We introduce as in [10] the mass concentration of 
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the first phase as c = c1 = m1/m, then for the second phase c2 = m2/m = 1 – c. Then we can 
calculate the partial densities 
 
ρ΄1=m1/V =(m1/m)·(m/V) = ρc   ,       ρ΄2= ρ(1 – c)   .    (16) 
 
Introducing volume concentration for the first phase as θ1 = θ = V1/V and for the second 
phase as θ2 = 1 – θ = V2/V, we can recalculate the specific densities of the phases as follows 
 
ρ1 = m1/V1= (m1/m)·(m/V)·(V/V1) = ρc/θ    ,      ρ2 = ρ(1 – c)/(1 – θ) .  (17) 
 
It is common (see [3, 4, 6-9, 11]) to tabulate a governing equation for the parameter θ (the 
compaction dynamics equation) evolving θ along the particle path of a mixture. Then from 
(15) an evolutionary equation for c in the form of the conservation law follows from the 
conservation of mass for the first or second phase. Thus, selection of the parameters 
related to density, namely, the averaged density and mass and volume fractions can be 
arranged in a natural way. 
 
Let us calculate pressure in an averaged medium. Firstly, we link the local pressures and 
densities with the partial ones. We consider an alternative presentation to (13) for the 
equations of state in the following form 
 
e1 = e1( ρ1, s1, q1)    ,        e2 = e2( ρ2, s2, q2)   .      (18) 
 
Then, from (12) and (16) it follows that 
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where the following denotations for the local pressures are used: 
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Obviously, choice of the equation of state in the form e or e΄ does not affect the calculation 
rules (12) for temperature T and entropy flux J. 
 
Selection of the parameters for the variables associated with momentum, thermal impulse, 
and entropy is not so easy. Because our objective is to derive equations in the form of 
conservation laws, it seems obvious to select parameters from combinations of the basic 
variables entering the conservation laws for the phases (9) and (10). 
 
We start with the momentum conservation law that gives for the total momentum the 
combination ρ΄1 u1 + ρ΄2 u2. Alternative combinations resulting in conservation laws are 
either 
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ρ΄1 u1 – ρ΄2 u2           (21) 
 
or 
 
u1 – ρ΄1 s1q1 – u2 + ρ΄2 s2q2  .        (22) 

 
The last combination is in agreement with a conservation law obtained from equations 
(15). From the combination for the total momentum conservation it follows  
 
ρ u = ρ΄1 u1 + ρ΄2 u2 
 
and from (16) 
 
u = c u1 + (1 – c) u2 .         (23) 
 
Selection of parameters for the thermal impulse and specific entropy may follow from the 
characterisation of the total thermal and entropy fluxes 
 
ρ΄1 q1 + ρ΄2 q2 
 
ρ΄1 s1 + ρ΄2 s2 
 
and alternative combinations follow from the fluxes’ differences: 
 
ρ΄1 q1 – ρ΄2 q2          (24) 

 
and 
 
ρ΄1 s1 – ρ΄2 s2  .          (25) 
 
A natural restriction follows from the energy conservation laws in (9) and (10), from which 
the total energy is calculated as follows 
 
ρ΄1 (e1 + u12/2) + ρ΄2 (e2 + u22/2)  .       (26) 
 
Because specific energy is an extensive variable, the averaged specific energy is 
 
e = c e1 + (1 – c) e2  .         (27) 
 
Thus, it follows that (26) and (27) should give 
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where u is determined from (23). Then, using (16), we have: 
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Therefore, using (23), we must define a generalised internal energy E as follows 
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It should be noted that the definition (28) is not dependent on how a choice of variables 
affects the velocity difference. The only restrictions imposed were those on the total 
momentum (23) and on the averaged specific internal energy (27). 
 
To choose a parameter for the velocity fluctuation we have two options (21) and (22). We 
start our analysis with the option (21), denoting a velocity difference parameter by w, so 
that 
 
ρ w = ρ΄1 u1 – ρ΄2 u2 
 
or, using (16) and (23), we have 
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This definition reduces the generalised internal energy (28) to the following 
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Subtraction of the momentum equations from (9) and (10) along with (19) and (29) gives 
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Thus, this governing equation clearly shows that evolution of the parameter w is 
determined by the gradient of a function which can not be associated with a potential of 
the generalised internal energy E. For this reason this parametric choice was considered to 
be unsuitable for our purposes. 
 
Thus, the only viable option for the selection of parameters characterising momentum, 
thermal impulse and entropy are combinations for the total momentum, total thermal 
impulse and total entropy flux complemented with the combinations (22), (24), and (25). 
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With the use of (16) for the thermal impulse and entropy flux, these combinations result in 
the following equations: 
 

( ) ( )
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qccqqccqq

−−=−+=
−−=−+=

χ
λ

      (30) 

 
A generalisation for multi-phase (n-phase) case might take the following form for λi (an 
analogue of the parameter λ): λi/n = ci qi – q/n (i=1,…,n). It is easy to see that for the two-
phase case this definition is reduced to the definition (30): λ = 2c q1 – [c q1 + (1 – c) q2] or λ = 
c q1 – (1 – c) q2. Thus, the phase thermal impulse and entropy can be calculated, using the 
present choice (30) that results in 
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,
2 2121 c
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    (31) 

 
Using the definitions (31), (16) and (23), and the combination (22) that was selected for our 
derivation, we can write down definitions of parameters involving velocities: 
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For the sake of convenience we denote 
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c
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then from (32) and (33) the phase velocities are 
 
u1 = u + ρ ν´ (1 – c)  ,      u2 = u – ρ ν´ c  .      (34) 
 
Summarising, the generalised energy can be calculated from (28) as follows 
 

( )( ) ,
2

1 2νρ ′−
+=

cceE         (35) 

 
where ν´, which is defined by (33), is a function of ν, q, s, c,  λ, and χ. It should be noted 
that with the present choice of velocity parameters (32) the variable ν does not have a 
dimension of velocity, similarly to the definition of velocity difference in the compact 
formulation of the model [1] obtained in [2]. 
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4. Equation of state for the two-phase model 

Using the equations of state (18) for the phases and definitions (17) and (31), we can build 
up the equation of state for an averaged medium: 
 
e(ρ, c, θ, q, λ, s, χ) = c e1(ρc/θ, (q + λ)/(2c), (s + χ)/(2c)) + 
            (36) 

+ (1 – c) e2(ρ(1 – c)/(1 – θ), (q – λ)/(2(1 – c)), (s – χ)/(2(1 – c)))  . 
 
Summarising the chosen set of parameters, the kinematic variable of the model is averaged 
velocity u and internal variables (independent thermodynamic parameters) are ρ, c, θ, q, λ, 
s, χ, and ν. Using (35) along with (36), we can calculate derivatives of E with respect to 
each of the independent thermodynamic parameters. We start with the derivative of E 
with respect to the mass concentration c: 
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Combining the result with (17), (20), (31), (12) and (4), we obtain the derivative in a 
compact form, which may be called a generalized chemical potential: 
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It should be mentioned that a similar inverse dependence of phase entropies on the mass 
concentration chosen in [14] proved to be a suitable representation for the potential Ec to 
be associated with an affinity of the Gibbs potentials. 
 
The derivative of E with respect to the specific density ρ can be associated with a 
generalised pressure P and it is calculated as follow 
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The derivative of E with respect to θ can be calculated with the use of (17), (20) and (36): 
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A generalised characteristic associated with the entropy flux J could be obtained by 
differentiation of E with respect to q: 
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and, similarly, generalised temperature 
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Derivatives with respect to λ and χ can be obtained in a similar way: 
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and 
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Temperatures and entropy fluxes of the individual phases can be calculated from (41), (43) 
and (40), (42), respectively, as follows 
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and 
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Finally, from (35) we need to calculate the derivative of E with respect to ν: 
 

( ) ( ) .11 22 νρ
ν
ννρν ′−=
∂
′∂′−==Ω ccccE       (46) 

 
This concludes the set of formulas for the determination of the dependent 
thermodynamical parameters of the model. 
 
 

5. Conservation laws of the two-phase model 

Conservation laws will be derived from the conservation laws (9) and (10) for partial 
parameters. We start with the mass conservation law. From (16) and (34): ρ΄1 + ρ΄2 = ρ and 
ρ΄1 u1 + ρ΄2 u2 = ρ u. Using these relations and summing up the continuity equations in (9)-
(10), we can obtain the continuity equation for the averaged variables: 
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x
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ρρ

         (47) 

 
Rewriting the continuity equation in (9) with the use of (17) and (34), we can obtain the 
following governing equation for the mass concentration: 
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From (46) this equation can be reduced to the following: 
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where Ω = Eν. 
 
The compaction dynamics equation for the volume concentration is chosen in the well-
know form of a conservation law within a material volume [3, 4, 6-9, 11, 14]: 
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,
0τ

ρθρθρ Π
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x
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t
        (49) 

 
here Φ is a function responsible for the process of phase compaction and τ0 is the relaxation 
time function governing the compaction kinetics. It should be mentioned that the kinetics 
chosen in (49) is quite natural because the compaction dynamics (rate of change of the 
volume fraction) should be associated with the pressure difference between the phases. 
This association can be easily seen from the definition (39) for Π.  
 
The momentum conservation laws (the second equations of systems (9) and (10)) give the 
following momentum equation for the two-phase medium: 
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        (50) 

 
Here the following relationships have been used that were derived from equations (34) 
and (38): 
 
ρ΄1 u1 + ρ΄2 u2 = ρ u , 
 
ρ΄1 (u1)2 + ρ΄2 (u2)2 + p = ρ u2 + p + ρ3 c(1 – c)(ν´)2  = ρ u2 + P . 
 
As we discussed in Section 3, auxiliary conservation laws (15) for chemical flux will be 
used for the representation of the velocity difference between the phases. We subtract the 
second equation of (15) from the first one and for the first term of the left-hand side we use 
the representation (22) directly in the form (32). The second term of the left-hand side of 
the resultant equation can be calculated with the help of the following relationships: 
 
(u1)2 – (u2)2 = (u1 – u2)(u1 + u2) = 2ρuν´ + (1 – 2c) ( ρ ν´)2  , 
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Using (37) and replacing corresponding parts in the second term by the results obtained 
above, we have the following expression for the derivand of the second term: 
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Thus, a conservation law for the chemical flux difference is: 
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       (51) 

 
where Ψ is calculated as a difference of the right-hand sides in (15), using the parametric 
representations of the material-specific parameters (16), (31), and (34). 
 
From (30) the total thermal impulse 
 
ρ΄1 q1 + ρ΄2 q2 = ρ q 
 
and after summation of the thermal impulse equations in (9) and (10) we have the 
following expression for derivand of the convective term with help of (16), (31), and (44): 
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Thus, the conservation law for the thermal impulse takes the following form 
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and the arguments of the thermal relaxation times τ1 and τ2 are calculated with the use of 
the phase’s parameter representations (17) and (34). It is interesting to note use of 2 as a 
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denominator for the flux of the generalised temperature in the conservation law (52) (for 
an n-phase mixture the denominator would be n, i.e. is the number of species in the 
mixture). The occurrence of this denominator in the present consideration results from an 
association of temperature and entropy flux with the total volume in contrast to partial 
characteristics such as density or pressure. 
 
The conservation law for parameter λ can be obtained by subtraction of the corresponding 
equation for the thermal impulse in (10) from that in (9). The following relationship is used 
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Hence, the conservation law takes the form 
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where Α = Eχ and 
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Similarly, conservation laws for entropy s and parameter χ could be obtained from (14) 
and (45): 
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and 
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      (55) 

 
where Β = Eλ. The term Δ was added up in order to take into account dissipation that arises 
during compaction of components of the multi-phase mixture. 
 
The energy conservation law could be derived directly from the conservation laws (47)-
(55), the equation of state (35)-(36), and relationships for the thermodynamic dependent 
variables obtained in the previous Section (in fact, this procedure will be followed in the 
subsequent Section). Nevertheless, to confirm the consistency of the derivations we will 
derive the energy conservation law for the mixture directly from the phase conservation 
laws in (9)-(10). To derive it, we first obtain an auxiliary relationship: 
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c (u1)2 + (1 – c) (u2)2 = u2 + ρ2 c(1 – c)(ν´)2 . 
 
Using it, we can evaluate the following part of the energy flux: 
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Using (44) and (45) along with definition (46), we can expand the expression J1T1 + J2T2 and 
evaluate the total energy flux as follows 
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Using the definitions of chemical potential (37) and generalised pressure (38), we have the 
following compact expression for the energy flux 
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Thus, the energy conservation law takes the following form for the two-phase mixture: 
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Summarizing, the complete system of equations for a two-phase medium involves the 
mass, momentum, and energy conservation laws 
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and conservation laws for mass and volume concentrations, the thermal impulse, and the 
fluctuations of the thermal impulse, entropy and chemical flux:  
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The system (57)-(58) is closed by the equation of state taken from (35)-(36) in the following 
form 
 
E = E (ρ, c, θ, q, λ, s, χ, ν)  .        (59) 
 
Therefore, the thermodynamic dependent variables can be calculated from the following 
generalised thermodynamic identity 
 
T ds = dE – P dρ/ρ2  – Λ dc – Α dχ – Β dλ – J dq –Ω dν  – Π dθ  .   (60) 
 
Specifically, from (59) and (60) the closure relations for the dependent variables take the 
following form: 
 
P = ρ2Eρ ,   Λ = Ec ,   Π = Eθ ,   T = Es ,   Α = Eχ ,   J = Eq ,   Β = Eλ ,   Ω = Eν . (61) 
 
The right-hand sides of the system (58) are determined by the internal mechanisms of the 
behaviour of the mixture. 
 
It is seen that the jump conditions can be easily obtained for the model because the 
conservation laws (57)-(58) can be used directly for this purpose. In particular, from the 



 
DSTO-TR-1862 

 
19 

jump conditions it follows that the dependent thermodynamic parameters P, Λ, T, Α, J, Β, 
and Ω and the averaged velocity u are the parameters which are conserved through the 
contact jump (when ignoring the parameter evolution, associated with the interphase 
friction and internal relaxation determined by the right-hand sides of (58)).  
 
 

6. Correctness of the model 

The energy conservation law can also be obtained from the system (58)-(59) in which the 
energy conservation law has been replaced by the conservation law for entropy (54). Using 
this approach for the derivation, equations of the system are multiplied by appropriate 
coefficients and after summation they result in the energy conservation law. We will 
conduct a backward equivalent procedure, expanding the energy conservation law after 
which the entropy conservation law is obtained and conditions of correctness can be 
found. 
 
Thus, expanding the equation (56) and using the mass conservation law, we can reduce it 
to the following 
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here d/dt = ∂/∂t + u ∂/∂x is  the particle derivative. Expanding this formula with the use of 
the mass and momentum conservation laws, equations (58), and the relationships (61), we 
have 
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Replacing the particle derivative of entropy from (54) and observing cross-annihilation of 
space derivatives, we can eventually obtain a restriction on the right-hand sides of the 
system (58) and equation (54): 
 

( ) .0210 =Α+Δ+++Β−−ΠΦ+Λ+ΩΨ HRRTGJFm  
 
Now, we can rewrite denotations of N1 and N2 in (15), when using Ψ = N1 – N2, through R1 
and R2 in (14) as follows 
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Expanding F, G, and H with the substitution of their expressions in (52), (53), and (55), we 
have 
 

( ) ( ) ( ) ( ) .0212121210 =−Α+Δ+++−Β−+−ΠΦ+Λ+ΩΨ RRRRTJm ϕϕϕϕ  
 
Using the relationships (37) and (46) for Λ and Ω and presenting the averaged variables 
back through the variables for each phase (material-specific variables) with the help of 
equations (44) and (45), from the last two formulas it follows 
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After obvious simplifications we have 
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that is finally reduced to  
 

.0=Δ+ΠΦ T  
 
Thus, fulfilment of the energy conservation law imposes the following restriction on the 
compaction dissipation term introduced in (55): 
 

.
0

2

τ
ρ
TT
Π

=
ΠΦ

−=Δ          (62) 

 
Therefore, as soon as the exchange terms l0, m0, and n0 in (9)-(10) are chosen in such a way 
that R1 + R2 ≥ 0 in (14), then the total entropy production is non-negative from (62). 
 
For an analysis of when the system (57)-(58) is hyperbolic, we will conduct it in the way 
performed in [15] for the single-temperature model. The eigenvalue analysis is fairly 
complex for the system (57)-(58) that can be written in the following matrix form 
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where U T = { ρ, c, θ, u, ν, q, λ, s, χ }. The point of the approach used in [15] was to 
reformulate a final system written in the mixture variables into an equivalent form, 
employing material-specific variables for the purpose of the eigenvalue analysis. For the 
present case the latter set of variables can be assembled as the following vector: 
 
U T = {θ, ρ1, u1, q1, s1, ρ2, u2, q2, s2} .       (64) 
 
The compaction dynamics equation (49) can be reduced to the following one: 
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We remind that the final system (57)-(58) (which could be used in an alternative form with 
the energy conservation law from (57) replaced by the entropy equation (54)) is a result of 
equivalent proper combinations of the systems (9), (10), and equations (14) and (15). In 
order to manipulate with the ‘real’ densities for each phase we use the following 
relationships: 
 
ρ΄1 = θ1 ρ1  ,        ρ΄2 = θ2 ρ2    , 
 
where denoted  θ1 = θ and θ2 = 1 – θ . Keeping in mind the following relationship for the 
averaged density ρ = θ1ρ1 + θ2ρ2, we can derive from the continuity equation (47) and from 
the equation (48) for ρc = ρ΄1 = θ1ρ1 the following equations for the phase densities: 
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    (66) 

 
From the entropy conservation law (54) and the conservation law for the entropy 
disequilibrium χ we can obtain the material-specific entropy conservation laws similar to 
(14) with an additive of Δ/2 to the right hand sides. From these equations we can derive 
auxiliary equations for θ1s1 and θ2s2 with the use of relationships ρ΄1s1 = ρ1θ1s1 and ρ΄2s2 = 
ρ2θ2s2 and equations (66): 
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  (67) 

 
Similarly, from the conservation laws (52) and (53) for the thermal impulse q and its 
disequilibrium λ, we can obtain the conservation laws for the phase’s thermal impulses 
that are identical to the thermal impulse conservation laws in (9) and (10). After some 
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manipulation for exclusion of the volume concentration they give us another pair of 
auxiliary equations for ρ1q1 and ρ2q2: 
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After multiplication of the first equation of (67) by q1 and the first equation of (68) by s1 
followed by their summation, we can obtain an equation for ρ1θ1q1s1 and, similarly, for 
ρ2θ2q2s2: 
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Rewriting the conservation law (51) for the chemical flux ρν in its equivalent form for the 
material-specific parameters (as a difference of equations in (1)), and then adding it to the 
first equation from (69) followed by subtraction of the second equation of (69), we can 
obtain the equation for the velocity difference in the following form: 
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Expanding the derivative of the chemical potentials according to (6), this equation can be 
reduced to the following: 
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The momentum conservation law (50) can be rewritten in the form of a sum of the 
momentum conservation laws from (9)-(10). Excluding the variables ρi and θi from the 
derivands of (50), we obtain the following equation: 
 



 
DSTO-TR-1862 

 
23 

( ) .011
21

2

2

2
2

2
22

1

1

1
1

1
11 =

∂
∂

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

x
pp

x
p

x
u

u
t

u
x
p

x
u

u
t
u θ

ρ
ρθ

ρ
ρθ  

 
Combining appropriately this equation with (70), we can obtain equations for the 
velocities of each phase: 
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Finally, from (67) and (68) we can derive equations for qi and si: 
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  (72) 

 
Summarising, from (65), (66), (71), and (72) we can obtain a system of equations, which is 
equivalent to the system (57)-(58), in the following form: 
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where a1 = ρ1(u1 – u)/θ1 and a2 = ρ2(u2 – u)/θ2, and b = p1 – p2. We assume that the equation 
of state for each phase has independent mechanical and thermal impulse parts as 
proposed in [12]: 
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We will use the following denotations (specified just for the first phase): 
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Thus, a presentation of the equivalent system (73) in the matrix form (63) for the vector of 
variables (64) can be obtained, where the matrix A is: 
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  (75) 

 
and the right hand side in (63) is 
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B T = {Φ/ρ, M1, G1, F1, N1, M2, G2, F2, N2} . 
 
Eigenvalues η of this system can be found from the following characteristic equation 
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Due to the structure of the matrix A (75), the characteristic equation (76) can be 
decomposed into the following product: 
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where ξ0 = u – η, ξ1 = u1 – η, and ξ2 = u2 – η. The solution ξ0 = 0 corresponds to the evolution 
of the volume concentration and two multipliers in (77) correspond to the characteristic 
equations for the first and second phases. Analysing one of them, the conditions of the 
existence of the roots are 
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Recalling denotations (74), we can rewrite the conditions as follows 
 

.,0
2

11

1
2

2
12

1

1
2

1

12
1

1
2
1

1
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
≥

∂
∂
⋅⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

≥
∂
∂

s
e

s
ee

q
e XXXT

ρ
ρ

ρ
ρ

ρ
 

 
After introduction of the specific volume as V1 = 1/ρ1, the conditions take the following 
well-known form 
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which represents the traditional conditions of the equation of state convexity for e1X and 
e1T. The same restriction should obviously be imposed for e2X and e2T as well. 
 
 

7. Discussion and conclusions 

The system of equations (57)-(58) has been obtained in a compact form for a two-phase 
heat-conducting medium. It appears that a generalisation for the multi-phase case can be 
conducted in an obvious way similar to the generalisation conducted in [2]. The conditions 
of hyperbolicity of the system (78) have been reduced to the requirement of convexity for 
the mechanical and thermal parts of the equation of state for individual phases. It should 
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be noted that non-strict hyperbolicity might be associated with the phase degeneration and 
a degeneration of the heat conductivity (which may happen when Ξi=0 in (74)) that is out 
of the scope of the report. The correctness of the model has been linked with the 
requirement of non-negative dissipation (62) associated with the compaction dynamics. It 
is interesting to note that the structure of the characteristic equation (77) preserves the 
characteristic structure of the original single-phase model when expanding it to the two-
phase case. This allows one to solve a Riemann problem for a two-phase mixture with the 
help of single-phase-model Riemann solvers for each phase, facilitating development of a 
suitable numerical algorithm based on the Godunov method. 
 
It should be noted that the generalisation of the model to the multi-dimensional case does 
not look obvious, and the major reason is the difficulties in a tensorial generalisation of the 
equation of state.  
 
The appearance of the denominator 2 (that presents the number of species in a two-phase 
mixture), entering the governing equations (54) for entropy, equations in the system (58) 
for the thermal impulse and for fluctuations of the thermal impulse and entropy, and the 
energy conservation law in (57) can be interpreted by the fact that the dependent 
thermodynamic parameters T and J are not really partial parameters, in contrast to density 
and pressure.  
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